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Abstract
Newer statistical procedures are typically introduced to help address the limitations of those already 
in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this 
paper as a relatively new methodology, which is intended to overcome some of the limitations of 
least squares mean regression (LMR). QR is more appropriate when assumptions of normality and 
homoscedasticity are violated. Also QR has been recommended as a good alternative when the 
research literature suggests that explorations of the relationship between variables need to move 
from a focus on average performance, that is, the central tendency, to exploring various locations 
along the entire distribution. Although QR has long been used in other fields, it has only recently 
gained popularity in educational statistics. For example, in the ongoing push for accountability and 
the need to document student improvement, the calculation of student growth percentiles (SGP) 
utilizes QR to document the amount of growth a student has made. Despite its proven advantages 
and its utility, QR has not been utilized in areas such as language testing research. This paper seeks 
to introduce the field to basic QR concepts, procedures, and interpretations. Researchers familiar 
with LMR will find the comparisons made between the two methodologies helpful to anchor the 
new information. Finally, an application with real data is employed to demonstrate the various 
analyses (the code is also appended) and to explicate the interpretations of results.
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Traditionally, when the research interest is to examine the relationship between and 
among variables or when one wants to estimate how independent variables influence 
changes in a dependent variable, least squares mean regression (LMR) is the standard 

Corresponding author:
Fang Chen, English Department, East China Normal University, 210, School of Foreign Languages, 500 
Dongchuan Road, Minhang District, Shanghai, 200241, China.  
Email: fennycf@yahoo.com

493623 LTJ31110.1177/0265532213493623Language TestingChen and Chalhoub-Deville
2013

Article



www.manaraa.com

64 Language Testing 31(1)

tool. However, it is sometimes difficult in the social sciences to meet two of the required 
regression assumptions, that is, normality and homoscedasticity (where the standard 
deviations of the error terms are assumed to be constant, or expressed differently, residu-
als are considered to be approximately equal for all predicted dependent variable scores). 
QR relaxes the need for these assumptions (Hao & Naiman, 2007). Also, regular regres-
sion focuses on the mean. However, with changes in higher order moments such as skew-
ness or kurtosis of the distribution, the median is likely to be a more appropriate measure 
of central tendency than the mean (Edgeworth, 1888; Fox, 1997; Hao & Naiman, 2007; 
Koenker, 2005). In reality, it is also commonly observed that the relationship between 
variables can change at different points in the distribution. In that case, a single, average 
pattern cannot adequately represent a complex relationship that shifts rather than stays 
constant along the distribution.

So, if assumptions of normality and homoscedasticity are violated or previous research 
suggests the need to explore the relationship of variables across the distribution, quantile 
regression (QR) is a better alternative. This article aims to introduce this statistical tool 
to the language testing community. It is hoped that this introduction will encourage 
researchers to examine the usefulness of this tool to further their explorations and to 
expand the knowledge base in the field.

To demonstrate the application of QR, the paper employs data from the National 
Center for Education Statistics, that is, The Early Childhood Longitudinal Study 
Kindergarten Class (ECLS-K) Program (http://nces.ed.gov/ecls/). The data set used is 
the released full sample data posted on the website http://nces.ed.gov/ecls/kinderdatain-
formation.asp, which includes English language learners (ELLs) as well as non-English 
language learners (N-ELLs). The present application addresses the relationship between 
language proficiency and math achievement.

A quick survey of the published literature (Abedi & Gandara, 2006; Abedi & Lord, 
2001; Bailey, 2005; Kato, Albus, Liu, Guven, & Thurlow, 2004; Kieffer, Lesaux, Rivera, 
& Francis, 2009; Solano-Flores, 2011; Stevens, Butler, & Castellon-Wellington, 2000; 
Wright & Li, 2008) shows that the relationship between language proficiency and math 
achievement has recently attracted a great deal of attention. Language proficiency has 
been investigated as a factor that contributes to the math achievement gap between ELLs 
and N-ELLs (Abedi & Lord, 2001; Cottrell, 1968). This differential relationship has 
been observed within and at various grade levels (Freeman & Crawford, 2008; Kopriva, 
Bauman, Cameron, & Triscari, 2009) and with different content areas (Abedi & Gandara, 
2006; Abedi & Leon, 1999; Bailey, 2005). The published literature underscores the fact 
that the relationship between language ability and math achievement is not static, which 
suggests that the relationship should not be summarized by one average pattern based on 
the mean, but modeled along the full ability distribution, an undertaking for which QR is 
best suited. The article introduces QR and models its procedures by investigating the role 
that language ability plays in order to achieve in math.

A word is in order about the application presented in the paper. The application is 
part of a larger study in which several independent variables are investigated. Given the 
amount of space typically allotted to an article, it is not feasible to present the larger 
study and to introduce the methodology. Upon consideration of the newness, deemed 
importance, and complexity of the literature discussing the QR methodology, we 
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decided to focus the first publication on introducing QR and to use a limited number of 
ECLS-K variables to explicate the methodology and its utility. The larger investigation 
will be prepared for publication in the near future. In the present application, the depend-
ent variable is math achievement scores. Reading, which is used as a proxy of language 
proficiency, and gender are included as the independent variables. The gender variable 
is chosen primarily to move the demonstration beyond a simple analysis, to multiple 
quantile regression, and to make accessible to the field relevant computer program syn-
tax and graphs.

Historical overview of quantile regression research

Roger Koenker (2005), the author of the first book devoted to QR, traced the procedure 
back to the mid-1700s by a Jesuit priest, Boscovich. This means that QR actually pre-
dates the introduction of least squares regression. In that first attempt to “ever do regres-
sion” (Koenker, 2005, p. 2), Boscovich estimated the slope coefficient through a process, 
which Laplace (1818) later noted as the “method of situation” because the model was an 
interesting mixture of central tendency measures. Although the slope was estimated 
based on the median, the intercept was still estimated as a mean. In 1888, Edgeworth 
improved Boscovich’s and Laplace’s ideas by proposing a process to minimize the sum 
of absolute residuals in both intercept and slope parameters. Thus, QR formally started.

Linear programming and technology advances have made efficient computation a 
manageable task and facilitated the use of QR with large-scale applications. QR has 
become a common statistical tool in many fields, such as medicine (Austin et al., 2005), 
biology (Wei et al., 2006), environmental studies (Pandey & Nguyen, 1999), survival 
analysis (Koenker & Geling, 2001), finance (Chevapatrakul, Kim, & Mizen, 2009), and 
economics (Koenker & Bilias, 2001). It is regarded as “the standard tool in wage and 
income studies in labor economics” (Yu, Lu, & Stander, 2003, p. 339) because of the less 
stringent assumptions and the advantages mentioned above.

The use of QR in the educational field is relatively new. Most of the earliest QR inves-
tigations focused on equality issues and appeared in journals of education economics 
(Haile & Nguyen, 2008; Wöβmann, 2005). For example, Haile and Nguyen (2008) stud-
ied the achievement gap among different ethnic groups and the impact of gender. Results 
from traditional LMR analyses were consistent with established findings that Asian stu-
dents scored on average better than White students in mathematics, regardless of gender. 
The QR results, however, offer a more nuanced depiction of this relationship. The QR 
analyses revealed that out of the five quantiles investigated (0.1, 0.25, 0.5, 0.75, and 0.9), 
a significant score difference was found between Asian and White males only at the low-
est ability level, that is, the 0.1 quantile. On the other hand, Asian female students out-
performed their White counterparts at all the other ability or quantile levels investigated 
(0.25, 0.5, 0.75, and 0.9).

In recent years, Damian Betebenner and colleagues (Betebenner, 2009a; Linn, Baker, 
& Betebenner, 2002) have used QR to formulate an innovative growth model of student 
achievement utilizing student growth percentiles (SGP), which has been embraced for 
accountability purposes in the United States. In 2005, former U.S. Secretary of Education, 
Margaret Spellings (Spellings, 2005), endorsed the Growth Model Pilot Program as an 
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alternative for states to comply with NCLB achievement mandates. (For a detailed dis-
cussion of NCLB, see the special issue of Language Testing (Deville & Chalhoub-
Deville, 2011).) Basically, and as opposed to simply reporting the percentage of proficient 
students every year, SGPs have been adopted by many states because, with the help of 
QR, it allows the documentation and investigation of the relative amount of growth that 
students make across a distribution. Growth models are now being promoted as a central 
component in the next reauthorization of NCLB (see Betebenner & Linn, 2010).

Language testers have also expressed interest in empirical research to document the 
abilities underlying performance as well as those contributing to growth, for example, 
diagnostic assessment programs such as DIALANG (Alderson, 2005), hierarchical/
developmental language levels and descriptors such as the CEFR (North, 2000), and the 
development of proficiency scales for ELLs as part of NCLB, Title III tests such as 
WIDA-ACCESS for ELLs and ELDA (Bunch, 2011). The present article seeks to intro-
duce the QR methodology to help spark interest among language researchers to explore 
its potential to address research questions (e.g., What is the magnitude of relationship 
between reading and content achievement at different points of a distribution? How can 
growth patterns be investigated in language achievement or performance?) that have 
interested researchers in the field.

Technical overview of quantile regression and software

Quantile is an equivalent term to percentile, where the median is the 50th quantile. 
Similarly, the 25th and 75th quantiles correspond to the first and third quartiles. QR 
modeling is a term for a series of QR alternatives. Quantiles are order-statistics and are 
relatively resistant to outliers. If errors follow a normal distribution, results of LMR and 
QR at the median coincide. If errors are not normally distributed or homoscedasticity 
does not hold, QR provides a more efficient and accurate estimate of parameters. In 
comparison to LMR, QR can uncover differences in the nature of a relationship at differ-
ent points in the distribution. QR can better handle the unequal variation observed with 
one or more independent variables at various points of a dependent variable.

A conventional approach to explore the differential relationship between reading and 
math is to divide the population into subgroups based on students’ math scores and con-
duct a series of classical regressions. Heckman (1979) argues strongly that such an 
approach could create biased parameter estimates. Figure 1 provides a visual presenta-
tion of the issue.

Figure 1 includes four LMR regression plots, including the total group and three sub-
groups, which document the relationship between reading and math for a sample of 
grade 5 students in US schools. The LMR total data plot shows a stronger relationship 
between the reading and math scores. The relationship looks different, however, when 
the students are divided into three math ability groups with equal numbers. Compared to 
the overall regression line based on the complete data, the flatter regression lines in the 
subgroup analyses indicate a weaker relationship between reading and math scores. Such 
results suggest that the truncated LMR fails to discover the strong relationship between 
reading and math scores at different ability levels. QR is a more appropriate analytic 
tool to study a changing relationship, such as the one observed in the present example. 
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(The graphical results are expected based on the restricted range in the three subgroups. 
The main point, however, is that QR can model the relationship among the variables 
more efficiently—namely with one analysis—and can reveal where the relationship of 
the variables differs within the distribution).

Several software packages are available to perform QR analyses. These include com-
mercial programs such as SAS and Stata. Free programs are also available, for example, 
the Quantreg package in R (cran.r-project.org/package=quantreg) and Blossom (www.
fort.usgs.gov/products/software/blossom/). R has the most complete and easy-to-carry-out 
functions. Quantile process plots can be obtained with all these programs. The ggplot2 
package in R (cran.r-project.org/package=ggplot2) is especially useful for tailored plots. 
Appendix A provides R or Stata code to run the analyses reported on in the present paper. 
Code for the Figure 3 example is too long to be included but is available upon request. In 
summary, “With today’s fast computers and wide availability of statistical software 
packages … fitting a quantile regression model to data has become easy. However, we 
have so far had no introduction … to the method to explain what quantile-regression is 
all about” (Hao & Naiman, 2007, p. vii). This quotation represents quite adequately the 

Figure 1. Total mean regression versus subgroup mean regression plots.
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state of affairs with regard to QR in fields such as language testing. The present paper 
seeks to remedy this situation.

Application data and data layout

The present QR illustration employs the grade 5 ECLS-K data, which is a partial set of 
the Kindergarten–Eighth Grade Full Sample Public-Use Data File especially prepared 
for longitudinal studies. More information about this data set can be located in the 
Combined User’s Manual for the ECLS-K Eighth-Grade and K–8 Full Sample Data 
Files and the Electronic Codebooks (Tourangeau, Nord, Lê, Sorongon, & Najarian, 
2009) and the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) 
(Najarian, Pollack, & Sorongon, 2009). The ECLS-K was developed under the sponsor-
ship of the U.S. Department of Education, Institute of Education Sciences and National 
Center for Education Statistics.

The selected data set includes 11,265 students in grade 5. The students represent those 
currently classified as ELLs, formerly classified as ELLs, and N-ELLs. Their respective 
percentages are approximately 3%, 14%, and 83%. An examination of the math distribu-
tion shows that whereas former ELL and N-ELL students are distributed evenly, more 
ELLs fall into the lower end of the math distribution.

The central research question in the present application is how language ability, oper-
ationalized as a reading score, contributes to performance in a content area, specifically 
math. The reading and math scores are based on assessment instruments designed for the 
ECLS-K program. Scores are derived using the three-parameter IRT model and are verti-
cally scaled from kindergarten to the 8th grade. The score range for reading is 64–203 
and for math is 51–171. In terms of the gender variable, the data are coded 0 for males 
and 1 for females.

The data for LMR as well as for QR are organized in a similar fashion for analyses to 
be carried out. It is the computation algorithm, not the data set-up that makes the differ-
ence in the types of analyses conducted. Figure 2 provides a snapshot of the data layout 
used in the current paper. Finally, to help the reader better anchor the QR concepts intro-
duced, LMR modeling is presented first and a comparison is made between the two sta-
tistical tools.

Finally, and with regard to the quantiles chosen in the present application, seven quan-
tile points are selected. These quantiles, commonly seen in the QR literature (e.g., 
Buchinsky, 1994; Haile & Nguyen, 2008; Koenker & Hallock, 2001; Konstantopoulos, 
2009; Wöβmann, 2005), include .05, .10, .25, .50, .75, .90, and .95.

Equations

Using one independent variable as an example, a simple LMR model can be written as

 y xi i i= + +β β ε0 1  (1)

β1 is the slope (i.e., the steepness of the regression line), which represents the strength 
of the relationship between variables x and y and β0 is its intercept on the y-axis. For the 
ECLS-K example, the formula is written as
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Figure 2. A snapshot of data layout for QR regression.

Figure 3. Quantile and least squares mean regression.

Conceptually, we wish to investigate the relationship between reading proficiency and 
math test scores. The data are used to find a single regression line that minimizes the 

MATH READINGi i i= + +β β ε0 1 (2)
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error term (thus also the least squared function). Algebraically, the goal is to find the 
point where the first derivative of the mean squared deviation is zero with respect to the 
mean. Graphically, the resulting regression line minimizes the sum of squared vertical 
distances of all response observations from the regression line. The best fitting line is the 
one that passes through the expected means of the response distributions conditioned at 
every value of the independent variable.

In comparison, a QR model can be written as

 y xi
p p

i i
p= + +β β ε0 1

( ) ( ) ( )
 (3)

Or using the ECLS-K example,

 MATH READINGi
p p

i i
p= + +β β ε0 1

( ) ( ) ( )
 (4)

The only notational difference between Equations as in equations plural 1 and 3 is the 
extra superscript “p”, which specifies the pth QR model.2 Usually a predetermined set of 
QR models are compared to detect the different effect of the independent variable on the 
dependent variable at various quantiles of the response distribution. It is important to 
note that all the data points are used for every QR modeling.3 Taking the ECLS-K as an 
example, where the reading score is the independent variable and math the dependent 
variable, the best fitting line for p = .5 passes the conditional 50th percentile (the median) 
of the math score distribution. In other words, half of the math scores lie above the 
median regression line and half below the line. For the regression line at p = .75, 75% of 
the cases are below the best fitting line and 25% are above. Similar interpretations apply 
to other QR ps.

Figure 3 shows the plots of the LMR as well as seven QR lines for the ECLS-K exam-
ple. The seven QR lines correspond to, from the bottom up, the regression modeling with 
conditional math percentiles at .05, .10, .25, .50, .75, .90, and .95. The LMR line (the 
dotted line) is very close to the median QR line (the solid line in the middle). However, 
the other QR lines (solid gray) all have different intercepts and slope coefficients. The 
slopes indicate that there is a differential relationship between reading and math scores 
at different parts of the distribution. For instance, the relationship seems stronger for 
students with low math scores (see the bottom line) than for those with high math scores 
(see the top line). The LMR subgroup models in Figure 1, on the other hand, show that 
the low, medium, and high slopes are relatively flat, thus indicating a weak relationship 
between language and math achievement,

Parameter estimation

In LMR modeling, estimates of the intercept and slope coefficients of the best-fitting line 
are the ones that minimize the sum of squared errors and is written as

 
ε β βi

i

n
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n
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assumptions of linearity, constant variance, and independence of x values are met, or-
dinary least square estimation provides the best, unbiased estimators of the population 
parameters.

In QR modeling, estimates of the intercept and slope coefficients that correspond to 
the best-fitting line are the ones that minimize the weighted sum of absolute errors
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 When p = .5, both simplify to y xi i
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The solution that minimizes the weighted sum of absolute distance is when 

yi
p p

ix= +β β0 1
( ) ( )  equals the pth percentile. For more detailed information on QR 

parameter estimation, see Koenker (2005) and Hao and Naiman (2007).
Several algorithms are available to estimate the QR parameters, for example, simplex 

(Koenker & d’Orey, 1987, 1994), interior point (Portnoy & Koenker, 1997), and the 
smoothing method (Chen, 2007). The default algorithm in both the Quantreg package in 
R and SAS is simplex. However, this method is computationally demanding and thus not 
recommended for large sample sizes. For sample sizes larger than 5000 observations and 
50 variables, interior point is considered more efficient (SAS, 2008, p. 5400).

The estimates for the QR coefficients using the interior point algorithm are summa-
rized in Table 1. The slope for the reading score in LMR is .69. The QR slopes of the 
reading scores for different math ability students vary from .77 (at the .05 quantile) to .47 
(at the .95 quantile). The values, as noted, are larger at lower quantiles than at higher 
quantiles. This implies that the relationship between reading and math is stronger for 
low-scoring math students and weaker for high-scoring math students. In comparison, 
the LMR average-centered slope of .69 underestimates the relationship for low math 
ability students but overestimates it for high math ability students.

The QR parameter estimates quantify the differential relationship between reading 
and math performance observed in Figures 1 and 3. The QR estimates indicate that read-
ing plays a more integral role with low-achieving math students and much less so with 
high-achieving math students. Given the QR estimates, we can clearly state that the 
LMR average-centered slope diminishes the importance of reading ability and the role it 
plays in predicting math achievement for low-scoring math students. On the other hand, 
for high-scoring math students, the LMR slope depicts an exaggerated role for reading in 
terms of students’ math performance. The differences in LMR and QR findings are not 
statistical nuances but critical flag posts that advise differentiated and more focused lan-
guage attention for students to be able to improve their math achievement. Given the 

ˆ
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present QR findings, students with low math scores do not simply need more math; they 
need more language instruction.

Standard errors and confidence intervals

Once the coefficients are estimated, standard errors are calculated to help test the statisti-
cal significance of the strength of the relationship, that is, the slope coefficient estimate 
β̂1

p . The null hypothesis specifies that the slope coefficient is equal to 0, which means 
there is no linear relationship between the independent and dependent variables. In this 
section, the discussion focuses on the standard errors and the confidence interval estima-
tion. The section that follows presents this information in a graphical form. Subsequent 
sections address hypothesis testing and goodness-of-fit.

In LMR, the standard error for the coefficient β1  is calculated by assuming a normal 
distribution of the error term. That is, the εi in equation 1 is regarded as independently 
and identically distributed across all covariate values with a mean of 0 and a constant 
variance of σε

2 (In fact, the subscript “i” can be dropped.) The σε
2 is not known but the 

variance of the residuals, sε
2, provides an unbiased estimator of σε

2 (Fox, 1997) .
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The sampling variance of β1can then be estimated as
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and the estimated standard error of the slope coefficient is just the square root of the 
sampling variance.
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x xi

β
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(10)

( ) /β β β1 1 1
− null SE is assumed to follow a student’s t distribution with n − 2 degrees 

of freedom and thus the 100(1 − α)% confidence interval for β1 is given by 

Table 1. Slope coefficients.

LMR QR

 .05 .10 .25 .50 .75 .90 .95

Intercept 20.44 −21.47 −15.88 −1.93 18.38 42.80 63.19 79.29
Slope .69 .77 .78 .77 .71 .62 .54 .47
SE (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01)
p .00 .00 .00 .00 .00 .00 .00 .00

ˆ
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β α β1 2 1
± t SE/ . The confidence interval helps assess the precision of the estimated  ̂β1, 

that is, the extent to which our estimated slope coefficient represents the population 
value.

As reported in Table 1, the LMR slope  β̂ is .69 and the standard error is .01. For the 
95% confidence interval, t. /05 2  is almost the same as z. /05 2 , which is 1.96. Thus, the final 
95% confidence interval falls between .69 − 1.96 × .01 and .69 + 1.96 × .01, which cor-
respond to .67 and .71. This narrow band of confidence interval can be clearly seen in 
Figure 4 by the solid horizontal line and the dotted lines closely above and below it. This 
is also consistent with the significant p values (p = .00) in Table 1, which implies high 
precision of estimation.

One reason for using QR modeling over LMR is that the conditional response distri-
bution is skewed rather than normal. In such cases, the traditional approach for calculat-
ing the standard error is not appropriate for QR modeling. Instead, it is recommended to 
use bootstrap methodology (Efron, 1979), such as the xy-pair technique, which does not 
require a specific distributional form.5 The observed data set is regarded as the popula-
tion and the algorithm bootstraps pairs of observations (e.g., a reading score with a cor-
responding math score) from the data repeatedly and generates multiple samples. Every 
sample gives a parameter estimate, which yields a distribution of the β̂1s. The standard 
deviation of these  β̂1 is taken as the standard error of the parameter  β1. As the number of 
bootstrapped samples increases, the sampling distribution of the β̂1 is approaching nor-
mal distribution,6 and the confidence interval follows the form of β α β1 2 1

± z SE/
(Koenker 

& Bassett, 1982).
Another approach to determining the confidence interval that does not require that 

estimates be normally distributed and capitalizes on the set of bootstrap samples 
obtained entails taking the empirical values from the distribution of the estimated  
β̂1and locating the corresponding empirical percentiles. For example, the 95% confi-
dence interval of the parameter β1 starts from the 2.5th percentile of all the  β̂1s from 
the empirical samples and ends at the 97.5th percentile of the estimated  β̂1s from 
these samples.

The standard errors of estimation for the ECLS-K example are provided in Table 1 in 
parentheses. These estimates are produced, by default, in Stata by randomly sampling the 
data (StataCorp, Base Reference Manual, 2009, p. 1457). As the table shows, all the 
standard error values are .01, which indicates that when these confidence bands are plot-
ted, they will be very close to their regression lines. This is clearly the case, as depicted 
in Figure 4, which is discussed in the next section.

The standard errors indicate a high degree of precision in each of the LMR and the QR 
plots. This precision, while desirable in terms of the quality of the estimates obtained, is 
not reassuring because the models do not yield comparable results. In the absence of the 
QR information, researchers are likely to move forward with a less than accurate depic-
tion of that relationship. It is only when we analyze the type of information provided by 
each of the two models that we can discern that QR facilitates a more nuanced under-
standing of the role played by reading ability for students with different math achieve-
ment scores. These findings impact our understanding of the nature of the relationship 
and the consequent instructional practices needed.

ˆ ˆ

ˆ ˆ
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Figure 4. Quantile process plots.
Notes: The black solid line with gray areas represents the quantile regression slope estimates at each quan-
tile and the confidence interval for the estimates respectively.
The horizontal solid red line with dotted red lines above and below represents the mean LSR regression 
estimates and confidence band.
The horizontal line at zero is the reference line for hypothesis testing against a slope value of 0.
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Graphs

For LMR and QR, when there is only one independent variable, as shown in equation 4, 
the regression lines can be plotted out directly. The difference is that in LMR there is 
only one regression line representing the mean pattern of relationship between the 
dependent and independent variables, whereas in QR there are usually many quantile 
regression lines corresponding to the relationship at several quantiles of interest (see 
Figure 3).

For quantile models that involve at least two independent variables or covariates, a 
unique form of graph called a quantile process plot is used to present the complex set of 
regression lines that depict the changes in the slope coefficients at each quantile. This 
quantile process plot can show more clearly how the coefficients differ across quantiles. 
Both the quantreg package in R and SAS can produce process plots.

Figure 4 is an example of a quantile process plot based on the QR model defined by 
equation 11. This model includes an additional variable, Gender, as a covariate.

 MATH READING GENDERi
p p

i
p

i i
p= + + +β β β ε0 1 2

( ) ( ) ( ) ( )  (11)

In Figure 4, the x-axis includes the seven quantiles from .05 to .95 and the y-axis presents 
the corresponding slope coefficients from these QRs. Figure 4 shows that the reading 
slopes are all positive (all the values are above the 0 reference line). The slope coeffi-
cients for reading decrease from .77 to .50 as students’ conditional math ability moves up 
in quantile values. The narrow confidence band (gray area), similar to the standard errors 
addressed above, indicates that the estimations are quite precise. The plot also shows lit-
tle overlap with the LMR confidence band (area between the two dotted horizontal lines), 
which illustrates how LMR and QR differ in modeling the relationship between math and 
reading. As already stated, in comparison to QR, the LMR model underestimates the 
relationship for low-scoring math students and overestimates that relationship for high-
scoring math students. These results, however, need statistical significance confirmation, 
which is presented under the ‘Hypothesis testing’ section.

The slope coefficients for the Gender variable are all negative. Since males are coded 
as 0 and females as 1, the negative slope coefficient means females tend to score lower 
than males in math. This pattern is true for both LMR and for the QR models at all seven 
quantiles. However, the quantile process plot shows that the difference in math scores 
between males and females is smaller for high-scoring math students, such as at the con-
ditional quantile of .90 as compared to the quantile of .25. These results, similar to those 
with reading, provide a more nuanced depiction of the nature of the relationship between 
these two variables.

Comparing the reading and the Gender plots in Figure 4, it is evident that the confi-
dence band for the Gender slope coefficients (i.e., the width of the gray area) reveals less 
precision of estimation compared to the estimation of reading. The Gender coefficients 
are still statistically significant since the confidence band does not cross the 0 reference 
line (hypothesis of the slope coefficient being 0). Finally, the interaction effect between 
Reading and Gender is not modeled here, but it can be explored and graphed.
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Hypothesis testing

With LMR, hypothesis testing for the significance of a single independent variable draws 
on the central limit theorem and follows regular regression procedures. The t-statistic is 
calculated as follows:

 
t

SE SE SE

null

=
−

=
−

=
β β β β

β β β

1 1 1 1

1 1 1

0

 (12)

The result is compared against the critical t with n −2 degrees of freedom under the null 
distribution. The hypothesis testing for a single independent variable in QR follows the 
same pattern with the only difference being that SEβ̂ 1  

is estimated based on boot-
strapped samples as described in a previous section. Using the model in equation 4 again, 
the results of the hypothesis of β1

null = 0 is summarized in Table 1. All the Reading slopes 
are statistically significant at the level of p = .00, whether it be LMR or QR.

However, because in QR several quantiles are modeled, additional hypotheses are 
of interest such as the equivalence of the various slope coefficients across quantiles. 
In QR, the xy-pair bootstrapping method described previously is used to produce a 
covariance matrix of the cross-quantile estimates, which can then be employed to 
perform this hypothesis testing, known as the test of equivalence. For a given varia-
ble, the covariance matrix allows the examination of whether any difference between 
the slope coefficients of any pair of quantiles is statistically different. For example, 
we can investigate whether there is a statistical difference in how reading perfor-
mance predicts math scores when the students are at the 75th versus the 90th percen-
tile of the math score distribution. The Wald statistic, shown in equation 13, is used 
for the test of equivalence.

 
Wald statistic =

( )( ) ( )

^
^ ^( ) ( )

β β
σ

β β

^ ^
1 1
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1 1

p q

p q

−

−  
(13)

In this equation,  β̂1
(p) is the parameter estimate from the pth QR model and  β̂1

(q) is the 
parameter estimate from the qth quantile regression model (i.e., any given pair of quan-
tiles). The denominator is the variance of the difference between the two coefficients for 
the pth and qth quantile regressions. Obviously, the Wald statistics can be extended to a 
joint test of equality of slopes at the same time. In that test, the null hypothesis becomes 
H0 1

05
1
10

1
90

1
95: . . . .β β β β= = = which is an omnibus test.

In a regression model with one independent variable, the Wald statistic follows a χ2 

distribution with one degree of freedom. In a model with p independent variables, the 
Wald statistic follows a χ2 distribution with p degrees of freedom (Koenker & Machado, 
1999). Thus, the Wald statistic can be readily extended for more complicated models for 
the test of equivalence of coefficients between quantiles. The Wald test is readily avail-
able in computer programs such as Stata and the Quantreg package in R (Koenker, 2009). 
Stata uses the sqreg command and Quantreg uses the command anova.rq to test the 
equivalence of coefficients between quantiles.

ˆ ˆ

ˆˆˆ

ˆ
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Using the ECLS-K data, Stata produces the results based on the model in equation 4 
in Table 2 on the equivalence of coefficients. The overall statistics is the omnibus test, 
which shows that there is statistically significant difference between some or all of the 
slope coefficients. Furthermore, pair-wise Wald tests reveal that the reading slope is sta-
tistically different between quantile .25 and .50 (w = 82.67, p = .000). This means the 
relationship between reading and math scores is different between students whose con-
ditional math ability is at the 25th percentile versus those at the 50th percentile. In addi-
tion, there is a significant difference between all upper pairs.

This significance for all the pair-wise comparisons of.25 and above provides statisti-
cal confirmation with regard to the differential relationship between math and reading at 
different points of the math score distribution. This statistical significance is strong evi-
dence that analyses of the relationship between reading and math should be explored 
beyond the mean of the distribution. In conclusion, QR is a more appropriate methodol-
ogy when a differential rather than an average relationship is thought to exist between 
and among variables.

Substantively, the lack of statistical significance for the two lowest quantile pairs 
could perhaps be interpreted as the incapacity to differentiate among students’ math 
achievement for those who possess low reading ability. The statistically significant pair-
wise comparisons observed with the other quantile pairs indicate that the relationship is 
not uniform at the conditional math ability percentiles investigated. These results suggest 
that the use of reading performance to predict math achievement needs to be considered 
at the specified points of the math distribution. Given the parameter and other statistical 
estimates reported earlier, we can conclude that for students struggling with math, one 
seeming course of action is to attend to developing these students’ reading skills to help 
promote their capability to engage and achieve in the content. Furthermore, for students 
with high math scores, evidence shows that prediction of their math performance using 
reading ability is less strong. These students seem to have attained a requisite language 
level and thus are less impacted in terms of their math performance.

QR goodness-of-fit index

For LMR, R2 is the usual measure of goodness-of-fit. It is defined as follows:
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Table 2. Test of equivalence.

Overall .05 = .10 .10 = .25 .25 = .50 .50 = .75 .75 = .90 .90 = .95

READING 86.86 1.75 4.14 82.67 187.63 78.40 33.22
 .000 .186 .042 .000 .000 .000 .000
 *** *** *** *** ***

The first row presents the test statistics; the second row presents the p-values.
***indicates significance level at or below .01.
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R2 is the ratio of the sum of squares due to regression (SSR) and the sum of squares of 
the total model (SST). As is commonly known, R2 represents the proportion of variance 
in the response variable being explained by the independent variables in the regression 
model. Inversely, R2 can be seen as the proportion of error variance (SSE/SST) sub-
tracted from 1 (this notion comes into play in the following paragraph). R2 ranges 
between 0 and 1. Higher values indicate a stronger relationship.

In QR, a similar index is suggested by Koenker and Machado (1999), which is the 
likelihood ratio of the sum of weighted absolute distances for the full pth QR model 
V1(p) and the sum of the weighted absolute distances for a model with only the intercept 
V 0(p). Stata labels this ratio pseudo-R2 to distinguish it from the LMR R2. The default 
Stata output includes R2 and pseudo-R2. The equation for pseudo-R2 is7
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For the model V 0(p), the intercept is the sample pth quantile Qˆ (p) of the dependent vari-
able. In the ECLS-K example here, the intercept for the pth quantile regression is the 
reading score at the pth percentile. Both V 0(p) and V 1(p) are nonnegative since they are 
the sum of absolute values. V 1(p) is always equal to or smaller than V 0(p) since a covari-
ate is supposed to explain some variance of the dependent variable. Similar to the R2, the 
pseudo-R2 range is 0–1, with a larger value indicating better model fit.

The goodness-of-fit results of the ECLS-K data for the two models defined by 
equation 4 and 11 are summarized in Table 3. The results in Table 3 show that with 
regard to the LMR R2, reading helps to explain 54% of the variance in math scores, 
while gender only explains an additional 2% (the difference between .56 and .54 in 
column 1) of the total variance. These LMR results show that while both variables are 
statistically significant, their meaningfulness is quite different. The explanatory mag-
nitude of reading (i.e., the amount of variance in the math dependent variable that can 
be predicted from students’ performance on the independent variable of reading) is 
substantial and deserves serious consideration. The small 2% increment renders the 
contribution of the other independent variable, gender, to be effectively meaningless. 
Having said that, one could still argue that this increment, while exceedingly small, 
points to a differential reading and math relationship for males and females, which 
may be important in some contexts.

The QR pseudo-R2 is interpreted as a measure of the relative effectiveness or good-
ness-of-fit of the model in explaining the data at the pth quantile. The results in Table 3 
show that R2 is always higher than psuedo-R2s. Such a pattern is typically observed in 
quantile regression studies (see Drescher & Goddard, 2011). These values, which range 
between .20 and .36, are still respectable and underscore the practical value of having 
reading performance as a predictor of students’ math scores. Finally, similar to the LMR 
R2, the QR pseudo-R2 at each quantile indicates that the gender variable does not contrib-
ute much to the explanation of the total variance in the data once reading is controlled 
for.

(15)
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Summary and remarks

In a traditional LMR, a single, mean-based slope is estimated to describe the relationship 
between a dependent, response variable and an independent, predictor variable(s). With 
this approach to modeling, the statistics are restricted in terms of their portrayal of a 
relationship and cannot address whether the variables show significantly different pat-
terns of association at points other than the mean. The traditional LMR analysis at the 
conditional mean is expanded with QR to provide a richer picture of variable 
relationships.

QR is considered a methodological improvement because it can depict a more detailed 
picture of the relationship between variables by estimating multiple slopes along the 
entire response distribution. The purpose of this article is to introduce the QR methodol-
ogy and to show researchers in the field how it can be utilized when multiple quantiles in 
a conditional distribution of the response variable are of interest. The paper explicates 
how to compute QR estimates and related statistics through a modification or extension 
of the familiar LMR methodology.

Special attention was given in the article to formulating interpretations of the quanti-
tative findings, a critical issue with a less familiar methodology. However, given the 
illustrative nature of the present application, the reader is cautioned when using these 
preliminary findings to draw conclusions about the relationship between reading and 
math. Whereas the results are accurate, they are restricted in scope given the delimited 
independent variables employed. The interpretations should be viewed more as mode-
ling potential results of QR principles and procedures.

Language testing research/applications

The application employed in the present paper highlights how a relationship can be 
explored at various ability levels of a distribution. This relationship is modeled given a 
group’s one-time performance: one set of reading and math scores. In an alternative, 
hypothetical implementation of QR, this statistical tool can be used to model growth 
across time for students/learners at different points of an initial distribution of perfor-
mance. In other words, the one-time performance could be modeled longitudinally with 
scores at several points in time to delineate a growth pattern. We can modify the graph in 
Figure 4 (the reading plot) to look at the performance of a given subgroup of students 
over time, for example, those at the  .25 quantile. The horizontal x-axis of the figure is 

Table 3. R2 and pseudo-R2.

R2 Pseudo-R2 at each p

Model .05 .10 .25 .50 .75 .90 .95
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no longer quantiles, but instead specifies longitudinal assessment administration points. 
In this hypothetical revised plot we can observe the performance of this group of .25 
quantile students longitudinally and track their growth pattern. Moreover, this growth 
pattern or trajectory can be used to help make predictions about expected future 
performance.

The SGP model, mentioned at the beginning of the article, links performance scores 
over time utilizing QR (SGPs have been popular with numerous states such as Colorado 
(www.schoolview.org/GMFAQ.asp) and New Jersey (www.nj.gov/education/njsmart/
performance/) to generate individual as well as group—buildings and districts—account-
ability reports). The SGP model is said to provide a norm- and a criterion-referenced 
depiction of student growth (Betebenner, 2009a). Normatively, the model provides “the 
relative location of a student’s [or a group’s] current score compared to the current scores 
of students with similar score histories.” The location in this reference group of “aca-
demic peers” is expressed as a percentile rank. For example, a student earning an SGP of 
80 performed as well as or better than 80 percent of her academic peers” (Castellano & 
Ho, 2012, p. 87). Additionally, SGPs are portrayed against criterion-referenced informa-
tion such as proficiency descriptors/categories. This norm- and criterion-referenced 
depiction of growth is illustrated in Figure 5, which was adapted from Betebenner 
(2009b). Betebenner generated his figure based on real student achievement data but we 
make use of it here to illustrate hypothetical applications in language testing.

Figure 5 provides an illustrative language testing example of SGP growth trajectories 
that we could produce using QR with longitudinal assessment data. The white SGP lines 
depict longitudinal patterns of growth for students at different quantiles (percentile lev-
els) along the y-axis. The x-axis comprises performances collected at different points in 
time, labeled as ‘longitudinal administration points’ in Figure 5. These longitudinal 
administration points could be progressive levels of language assessments related to a 
suite of certificate-based exams, a sequenced textbook series of tests provided by a pub-
lisher, successive course assessment offered at a language school, or annual exams for 
ELLs as required by NCLB.

Students’ achievement SGPs are portrayed over four (gray-scale) levels that represent 
proficiency categories, which are typically derived from a framework (e.g., the ACTFL 
Guidelines, the CEFR, or descriptors of language expected in a content domain) and 
quantified using some standard setting procedure (see Cizek & Bunch, 2007). By con-
necting the achievement-based SGPs to proficiency standards, we can then chart the 
potential for growth to the next proficiency level. The seven black lines in Figure 5 illus-
trate a variety of growth trajectories that one might expect (given the actual rates of 
progress observed with the SGP achievement data) for a student at the 30th percentile/
Below Proficient–Proficient threshold. The black growth trajectories across the longitu-
dinal administration points show that a typical growth trajectory, 50th percentile, is 
needed for the student to reach the Proficiency category and that a remarkable growth 
potential, 90th percentile, can move the student by longitudinal administration point 8 to 
an Advanced Proficient category. To sum up, these growth percentile trajectories account 
for students’ current status, offer multiple scenarios of growth, quantify the likelihood of 
achieving an amount of growth, and depict the level of proficiency—and related descrip-
tor information—attained.
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QR is a statistical methodology that can facilitate the analysis of a variety of research 
questions and lead to worthwhile applications. Language testers are encouraged to con-
sider the usefulness of QR as a tool that can strengthen and expand their research inves-
tigations, enrich the field’s understanding of phenomena of interest, and enhance score 
interpretation and use.
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Notes

1. The methodology sections benefit from and correspond to the structure found in Hao and 
Naiman (2007).

2. Koenker and other authors use the letter τ rather than p. For ease of communication, p is used 
here to reference a given percentile value.

3. It is a misconception that only a subset of the observations is used for every quantile regression. 
It is standard procedure to use all observations in a given data set to locate a quantile given that 
it is the the pth value in the ordered observations. Also, the quantile regression analysis is a 
minimization of the weighted sum of absolute residuals for all the observations.

4. Koenker’s notation for this concept is ρ ξτ ( )yi
i

n
−∑

=1
. The notation used in this paper is more 

consistent with notations commonly seen in equations for least squares regressions in the social 
science literature.

5. Other techniques are available such as the Parzen, Wei, and Ying’s (1994) version of the xy-pair 
bootstrap and the Markov chain marginal bootstrap by He and Hu (2002) and by Kocherginsky, 
He, and Mu (2005). Non-bootstrap methods have also been developed. For more details about 
these methods, the reader is referred to Koenker (2005).

6. The normal distribution here refers to the distribution of the β̂1s from all the bootstrapped sam-
ples. This is related to the features of sampling distribution, which as the central limit theorem 
describes, will lead to a normal distribution of the β̂1s if we repeat the sampling procedure 
enough times. This is different from the mean regression normality assumption of where the 
error terms are required to be normally distributed.

7. In Hao and Naiman (2007), this is denoted as R(p).
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Appendix A: Codes for most of the analyses for the examples

Code using R program:
# Code to generate the LSR line for the total group in Figure 1 #
G5<-read.csv(“G5all.csv”)
attach(G5)
G5Slm<-lm(MATH~READING,data=G5)
 plot(READING,MATH,cex=0.25,type=“n”,xlab=“Reading”,ylab=“Math”,main=“Gr
ade 5 Total”,xlim=c(50,210),ylim=c(50,180))
points(READING,MATH,cex=0.25,col=“blue”)
abline(lm(MATH~READING),lwd=2,col=“blue”)
# Code for the LSR line for Grade 5 Low math ability #
G5low<-read.csv(“G5low.csv”)
attach(G5low)
G5Slmlow<-lm(MATH~READING,data=G5low)
 plot(READING,MATH,cex=0.25,type=“n”,xlab=“Reading”,ylab=“Math”,main=“Gr
ade 5 Low”,xlim=c(50,210),ylim=c(50,180))
points(READING,MATH,cex=0.25,col=“blue”)
abline(lm(MATH~READING),lwd=2,col=“blue”)
# Code for the LSR line for Grade 5 Medium math ability #
G5medium<-read.csv(“G5medium.csv”)
attach(G5medium)
G5Slmmedium<-lm(MATH~READING,data=G5medium)
 plot(READING,MATH,cex=0.25,type=“n”,xlab=“Reading”,ylab=“Math”,main=“Gr
ade 5 Medium”,xlim=c(50,210),ylim=c(50,180))
points(READING,MATH,cex=0.25,col=“blue”)
abline(lm(MATH~READING),lwd=2,col=“blue”)
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# Code for the LSR line for Grade 5 High math ability #
G5high<-read.csv(“G5high.csv”)
attach(G5high)
G5Slmhigh<-lm(MATH~READING,data=G5high)
 plot(READING,MATH,cex=0.25,type=“n”,xlab=“Reading”,ylab=“Math”,main=“Gr
ade 5 High”,xlim=c(50,210),ylim=c(50,180))
points(READING,MATH,cex=0.25,col=“blue”)
abline(lm(MATH~READING),lwd=2,col=“blue”)
# Code to generate Figure 3 #
plot(READING,MATH,cex=0.25,type=“n”,xlab=“Reading”,ylab=“Math”,main=“Quan
tile and Mean Regression Lines”,xlim=c(50,210),ylim=c(50,180))
points(READING,MATH,cex=0.25,col=“blue”)
abline(rq(MATH~READING,tau=0.5),lwd=2,col=“blue”)
abline(lm(MATH~READING),lty=2,lwd=2,col=“red”)
taus<-c(0.05,0.1,0.25,0.75,0.9,0.95)
for (i in 1:length(taus)){
abline(rq(MATH~READING,tau=taus[i]),lwd=2, col=“gray”)
}
# Code to generate Figure 4#
G5Flm<-lm(MATH~READING+GENDER,data=G5)
G5Full<-summary(rq(MATH~READING+GENDER,tau = 1:19/20,data=G5, method=“
fn”),se=“boot”,R=500,bsmethod=“xy”)
# “method=‘fn’” stands for the Frisch-Newton interior point estimation, “se=‘boot’” 
means the SE is estimated using the bootstrapping method, “R=500” means 500 samples 
are generated, “bsmethod=‘xy’” means the specific bootstrapping method used here is 
xy-pair. #
plot(G5Full)
abline(lm(MATH~READING+GENDER),lty=2,col=“red”)
savePlot(“G5Full”,type=“jpeg”)
Code in Stata:
# Code to run the model with one covariate and produce statistics in Table 1 #
insheet using “ G5all.csv”;
set seed 12345;
regress math reading;
sqreg math reading, q(.05 .10 .25 .5 .75 .90 .95) reps(500);
# Code to run the model with two covariates and produce statistics in Table 2 #
set seed 12345;
regress math reading gender;
sqreg math reading gender, q(.05 .10 .25 .5 .75 .90 .95) reps(500);
test [q5]reading=[q10]reading;
test [q10]reading=[q25]reading,accum;
test [q25]reading=[q50]reading,accum;
test [q50]reading=[q75]reading,accum;
test [q75]reading=[q90]reading,accum;
test [q90]reading=[q95]reading,accum;
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test [q5]reading=[q10]reading;
test [q10]reading=[q25]reading;
test [q25]reading=[q50]reading;
test [q50]reading=[q75]reading;
test [q75]reading=[q90]reading;
test [q90]reading=[q95]reading;
log close;
clear;
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